
Verifying VoIP traffic prioritization

On a university's campus VoIP Wi-Fi clients had been deployed using a variety of different
smartphone Apps. After a short trial the service was deployed to a wider group of staff but quickly
found to be unreliable. Users complained of audio problems such as stuttering, periods of silence
and poor quality.

The telephony team were unable to recreate the problem but confirmed their testing had taken
place in quiet office environments.

The solution used SIP and RTP with a telephony server hosted by a third-party service provider.
Whilst the telephony provider had a direct peering with the education and research network used
for off-campus internet connectivity, there was no support for end to end QoS across this link.

When implementing VoIP over Wi-Fi on a busy network, prioritizing the latency sensitive traffic is an
important part of maintaining the perceived performance and quality. Enhanced Distributed Channel
Access (EDCA) is the mechanism used to implement Wi-Fi QoS, allowing clients to increase the
chances of higher priority traffic being sent first when contending for access to the wireless medium.

EDCA assigns one of four Access Categories (AC) Background, Best effort, Video or Voice with the
default being AC_BE (Best Effort).

Typically, as VoIP traffic arrives at an AP or Wi-Fi controller from the Distribution System (DS), Layer
3 Differentiated Services Code Point (DSCP) markings or the Layer 2 Class of Service (CoS) parameter
can be mapped to the appropriate Access Category, in this case AC_VO. Conversely for received
wireless traffic being forwarded on the DS, the Access Category is mapped to the appropriate DSCP
or CoS. In this instance the absence of end to end QoS meant VoIP traffic arriving at the Wi-Fi
controller from the DS didn't have any QoS markings.

The majority of Wi-Fi traffic at busy times was downstream from APs to clients, coinciding with
increased internet bandwidth use but monitoring showed no congestion on the offsite link or the
LAN. I suspected the lack of QoS markings meant VoIP traffic was not being prioritized by the APs.
This possibility had previously been dismissed as an Application Level Gateway (ALG) function on the
Wi-Fi controller was supposed to identify the VoIP traffic and prioritize it appropriately.

Over the air capture of VoIP traffic between a smartphone client and AP shows the ALG was not
working as expected with VoIP traffic from AP to client being sent as AC_BE.

Figure 1- AP VoIP TX with no prioritization

On further investigation it was found the Wi-Fi controller ALG setting was not active for the role
assigned to the VoIP users. After correcting this it was found the VoIP traffic from AP to client was
being correctly prioritized.

Figure 2 - AP VoIP TX with prioritization

Captures showed upstream VoIP traffic from the example iOS client was not bring prioritised.

Figure 3- iOS client VoIP TX

It was found support for QoS was available in the iOS app and by default this was not enabled.
Turning this function on resulted in voice traffic from the client being placed in the video AC. Whilst
using the voice AC would be preferred, this is still a higher priority for the upstream traffic.

Figure 4- iOS client VoIP TX with QoS enabled

Capture of an alternative client using a SIP app on an Android device showed this client was also not
prioritizing the voice traffic. There was no QoS functionality in this app.

Figure 5 – Android client VoIP TX

After resolving the controller config issue and enabling QoS on the iOS SIP app, VoIP traffic sent from
the DS via the AP was using AC_VO and upstream VoIP traffic from the iOS client was using AC_VI.
This appeared to resolve the audio quality issues for the iOS app users.

Because the Android clients were still sending voice data using AC_BE, when channel access was
heavily contended there remained a risk of latency causing quality issues. This would manifest as
audio problems for the remote caller rather than at the Wi-Fi client. It was confirmed the initial
audio quality problems were evident in both directions.

Based on these captures I concluded the iOS app, with QoS enabled, was the best solution. The
Android app was not capable of supporting QoS and there would likely be a repeat of issues when
used on a busy network.

